
1.7 Exercises

Exercise 1.1 (Best fit functions versus best least squares fit) In many experiments
one collects the value of a parameter at various instances of time. Let yi be the value of
the parameter y at time xi. Suppose we wish to construct the best linear approximation
to the data in the sense that we wish to minimize the mean square error. Here error is
measured vertically rather than perpendicular to the line. Develop formulas for m and b to
minimize the mean square error of the points {(xi, yi) |1 ≤ i ≤ n} to the line y = mx+ b.

Exercise 1.2 Given five observed parameters, height, weight, age, income, and blood
pressure of n people, how would one find the best least squares fit subspace of the form

a1 (height) + a2 (weight) + a3 (age) + a4 (income) + a5 (blood pressure) = 0

Here a1, a2, . . . , a5 are the unknown parameters. If there is a good best fit 4-dimensional
subspace, then one can think of the points as lying close to a 4-dimensional sheet rather
than points lying in 5-dimensions. Why is it better to use the perpendicular distance to the
subspace rather than vertical distance where vertical distance to the subspace is measured
along the coordinate axis corresponding to one of the unknowns?

Exercise 1.3 What is the best fit line for each of the following set of points?

1. {(0, 1) , (1, 0)}

2. {(0, 1) , (2, 0)}

3. The rows of the matrix  17 4
−2 26
11 7


Solution: (1) and (2) are easy to do from scratch. (1) y = x and (2) y = 2x. For
(3), there is no simple method. We will describe a general method later and this can

be applied. But the best fit line is v1 = 1√
5

(
1
2

)
. FIX Convince yourself that this is

correct.

Exercise 1.4 Let A be a square n × n matrix whose rows are orthonormal. Prove that
the columns of A are orthonormal.

Solution: Since the rows of A are orthonormal AAT = I and hence ATAAT = AT . Since
AT is nonsingular it has an inverse

(
AT
)−1

. Thus ATAAT
(
AT
)−1

= AT
(
AT
)−1

implying
that ATA = I, i.e., the columns of A are orthonormal.
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Exercise 1.5 Suppose A is a n×n matrix with block diagonal structure with k equal size
blocks where all entries of the ith block are ai with a1 > a2 > · · · > ak > 0. Show that A
has exactly k nonzero singular vectors v1,v2, . . . ,vk where vi has the value ( k

n
)1/2 in the

coordinates corresponding to the ith block and 0 elsewhere. In other words, the singular
vectors exactly identify the blocks of the diagonal. What happens if a1 = a2 = · · · = ak?
In the case where the ai are equal, what is the structure of the set of all possible singular
vectors?
Hint: By symmetry, the top singular vector’s components must be constant in each block.

Exercise 1.6 Prove that the left singular vectors of A are the right singular vectors of
AT .

Solution: A = UDV T , thus AT = V DUT .

Exercise 1.7 Interpret the right and left singular vectors for the document term matrix.

Solution: The first right singular vector is a synthetic document that best matches the
collection of documents. The first left singular vector is a synthetic word that best matches
the collection of terms appearing in the documents.

Exercise 1.8 Verify that the sum of rank one matrices
r∑
i=1

σiuivi
T can be written as

UDV T , where the ui are the columns of U and vi are the columns of V . To do this, first
verify that for any two matrices P and Q, we have

PQ =
∑
i

piqi
T

where pi is the ith column of P and qi is the ith column of Q.

Exercise 1.9

1. Show that the rank of A is r where r is the miminum i such that arg max
v⊥v1,v2,...,vi
|v|=1

|A v| = 0.

2. Show that
∣∣uT1A∣∣ = max

|u|=1

∣∣uTA
∣∣ = σ1.

Hint: Use SVD.

Exercise 1.10 If σ1, σ2, . . . , σr are the singular values of A and v1,v2, . . . ,vr are the
corresponding right singular vectors, show that

1. ATA =
r∑
i=1

σ2
i vivi

T
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2. v1,v2, . . .vr are eigenvectors ofATA.

3. Assuming that the set of eigenvectors of a matrix is unique, conclude that the set of
singular values of the matrix is unique.

See the appendix for the definition of eigenvectors.

Exercise 1.11 Let A be a matrix. Given an algorithm for finding

v1 = arg max
|v|=1

|Av|

describe an algorithm to find the SVD of A.

Exercise 1.12 Compute the singular valued decomposition of the matrix

A =

(
1 2
3 4

)
Exercise 1.13 Write a program to implement the power method for computing the first
singular vector of a matrix. Apply your program to the matrix

A =


1 2 3 · · · 9 10
2 3 4 · · · 10 0
...

...
...

...
9 10 0 · · · 0 0
10 0 0 · · · 0 0


Exercise 1.14 Modify the power method to find the first four singular vectors of a matrix
A as follows. Randomly select four vectors and find an orthonormal basis for the space
spanned by the four vectors. Then multiple each of the basis vectors times A and find a
new orthonormal basis for the space spanned by the resulting four vectors. Apply your
method to find the first four singular vectors of matrix A of Exercise 1.13

Exercise 1.15 Let A be a real valued matrix. Prove that B = AAT is positive definite.

Exercise 1.16 Prove that the eigenvalues of a symmetric real valued matrix are real.

Exercise 1.17 Suppose A is a square invertible matrix and the SVD of A is A =
∑
i

σiuiv
T
i .

Prove that the inverse of A is
∑
i

1
σi
viu

T
i .

Exercise 1.18 Suppose A is square, but not necessarily invertible and has SVD A =
r∑
i=1

σiuiv
T
i . Let B =

r∑
i=1

1
σi
viu

T
i . Show that Bx = x for all x in the span of the right

singular vectors of A. For this reason B is sometimes called the pseudo inverse of A and
can play the role of A−1 in many applications.
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Exercise 1.19

1. For any matrix A, show that σk ≤ ||A||F√
k

.

2. Prove that there exists a matrix B of rank at most k such that ||A−B||2 ≤ ||A||F√
k

.

3. Can the 2-norm on the left hand side in (b) be replaced by Frobenius norm?

Exercise 1.20 Suppose an n × d matrix A is given and you are allowed to preprocess
A. Then you are given a number of d-dimensional vectors x1,x2, . . . ,xm and for each of
these vectors you must find the vector Axi approximately, in the sense that you must find a
vector ui satisfying |ui−Axi| ≤ ε||A||F |xi|. Here ε >0 is a given error bound. Describe
an algorithm that accomplishes this in time O

(
d+n
ε2

)
per xi not counting the preprocessing

time.

Exercise 1.21 (Constrained Least Squares Problem using SVD) Given A, b,
and m, use the SVD algorithm to find a vector x with |x| < m minimizing |Ax−b|. This
problem is a learning exercise for the advanced student. For hints/solution consult Golub
and van Loan, Chapter 12.

Exercise 1.22 (Document-Term Matrices): Suppose we have a m×n document-term
matrix where each row corresponds to a document where the rows have been normalized
to length one. Define the “similarity” between two such documents by their dot product.

1. Consider a “synthetic” document whose sum of squared similarities with all docu-
ments in the matrix is as high as possible. What is this synthetic document and how
would you find it?

2. How does the synthetic document in (1) differ from the center of gravity?

3. Building on (1), given a positive integer k, find a set of k synthetic documents such
that the sum of squares of the mk similarities between each document in the matrix
and each synthetic document is maximized. To avoid the trivial solution of selecting
k copies of the document in (1), require the k synthetic documents to be orthogonal
to each other. Relate these synthetic documents to singular vectors.

4. Suppose that the documents can be partitioned into k subsets (often called clusters),
where documents in the same cluster are similar and documents in different clusters
are not very similar. Consider the computational problem of isolating the clusters.
This is a hard problem in general. But assume that the terms can also be partitioned
into k clusters so that for i 6= j, no term in the ith cluster occurs in a document
in the jth cluster. If we knew the clusters and arranged the rows and columns in
them to be contiguous, then the matrix would be a block-diagonal matrix. Of course
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the clusters are not known. By a “block” of the document-term matrix, we mean
a submatrix with rows corresponding to the ithcluster of documents and columns
corresponding to the ithcluster of terms . We can also partition any n vector into
blocks. Show that any right singular vector of the matrix must have the property
that each of its blocks is a right singular vector of the corresponding block of the
document-term matrix.

5. Suppose now that the singular values of all the blocks are distinct (also across blocks).
Show how to solve the clustering problem.

Hint: (4) Use the fact that the right singular vectors must be eigenvectors of ATA. Show
that ATA is also block-diagonal and use properties of eigenvectors.

Solution: (1)
(2)
(3): It is obvious that ATA is block diagonal. We claim that for any block-diagonal
symmetric matrix B, each eigenvector must be composed of eigenvectors of blocks. To
see this, just note that since for an eigenvector v of B, Bv is λv for a real λ, for a block
Bi of B, Biv is also λ times the corresponding block of v .
(4): By the above, it is easy to see that each eigenvector of ATA has nonzero entries in
just one block.
(e)

Exercise 1.23 Generate a number of samples according to a mixture of 1-dimensional
Gaussians. See what happens as the centers get closer. Alternatively, see what happens
when the centers are fixed and the standard deviation is increased.

Exercise 1.24 Show that maximizing xTuuT (1 − x) subject to xi ∈ {0, 1} is equivalent
to partitioning the coordinates of u into two subsets where the sum of the elements in both
subsets are equal.

Solution: xTuuT (1−x) can be written as the product of two scalars
(
xTu

) (
uT (1− x)

)
.

The first scalar is the sum of the coordinates of u corresponding to the subset S and the
second scalar is the sum of the complementary coordinates of u. To maximize the product,
one partitions the coordinates of u so that the two sums are as equally as possible. Given
the subset determined by the maximization, check if xTu = uT (1− x).

Exercise 1.25 Read in a photo and convert to a matrix. Perform a singular value decom-
position of the matrix. Reconstruct the photo using only 10%, 25%, 50% of the singular
values.

1. Print the reconstructed photo. How good is the quality of the reconstructed photo?

2. What percent of the Forbenius norm is captured in each case?

32



Hint: If you use Matlab, the command to read a photo is imread. The types of files that
can be read are given by imformats. To print the file use imwrite. Print using jpeg format.
To access the file afterwards you may need to add the file extension .jpg. The command
imread will read the file in uint8 and you will need to convert to double for the SVD code.
Afterwards you will need to convert back to uint8 to write the file. If the photo is a color
photo you will get three matrices for the three colors used.

Exercise 1.26 Find a collection of something such as photgraphs, drawings, or charts
and try the SVD compression technique on it. How well does the reconstruction work?

Exercise 1.27 Create a set of 100, 100×100 matrices of random numbers between 0 and
1 such that each entry is highly correlated with the adjacency entries. Find the SVD of
A. What fraction of the Frobenius norm of A is captured by the top 100 singular vectors?
How many singular vectors are required to capture 95% of the Frobenius norm?

Exercise 1.28 Create a 100 × 100 matrix A of random numbers between 0 and 1 such
that each entry is highly correlated with the adjacency entries and find the first 100 vectors
for a single basis that is reasonably good for all 100 matrices. How does one do this? What
fraction of the Frobenius norm of a new matrix is captured by the basis?

Solution: If v1,v2, · · · ,v100 is the basis, then A = Av1v1
T + Av2v2

T + · · · .

Exercise 1.29 Show that the running time for the maximum cut algorithm in Section ??
can be carried out in time O(n3 + poly(n)kk), where poly is some polynomial.

Exercise 1.30 Let x1, x2, . . . , xn be n points in d-dimensional space and let X be the
n×d matrix whose rows are the n points. Suppose we know only the matrix D of pairwise
distances between points and not the coordinates of the points themselves. The xij are not
unique since any translation, rotation, or reflection of the coordinate system leaves the
distances invariant. Fix the origin of the coordinate system so that the centroid of the set
of points is at the origin.

1. Show that the elements of XTX are given by

xTi xj = −1

2

[
d2
ij −

1

n

n∑
j=1

d2
ij −

1

n

n∑
i=1

d2
ij +

1

n

n∑
i=1

n∑
j=1

d2
ij

]
.

2. Describe an algorithm for determining the matrix X whose rows are the xi.

Solution: (1) Since the centroid of the set of points is at the origin of the coordinate
axes,

∑n
i=1 xij = 0. Write

d2
ij = (xi − xj)T (xi − xj) = xTi xi + xTj xj − 2xTi xj (1.3)
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Then
1

n

n∑
i=1

d2
ij =

1

n

n∑
i=1

xTi xi + xTj xj (1.4)

Since 1
n

∑n
i=1 x

T
j xj = xTj xj and 1

n

(∑n
i=1 x

T
i

)
xj = 0.

Similarly
1

n

n∑
j=1

d2
ij =

1

n

n∑
j=1

xTj xj + xTi xi (1.5)

Summing (1.4) over j gives

1

n

n∑
j=1

n∑
i=1

d2
ij =

n∑
i=1

xTi xi +
n∑
j=1

xTj xj = 2
n∑
i=1

xTi xi (1.6)

Rearranging (1.3) and substituting for xTi xi and xTj xj from (1.3) and (1.4) yields

xTi xj = −1

2

(
d2
ij − xTi xi − xTj xj

)
= −1

2

(
d2
ij −

1

n

n∑
j=1

d2
ij −

1

n

n∑
i=1

d2
ij +

2

n

n∑
i=1

xTi xi

)

Finally substituting (1.6) yields

xTi xj = −1

2

(
d2
ij − xTi xi − xTj xj

)
= −1

2

(
d2
ij −

1

n

n∑
j=1

d2
ij −

1

n

n∑
i=1

d2
ij +

1

n2

n∑
j=1

n∑
i=1

d2
ij

)

Note that is D is the matrix of pairwise squared distances, then 1
n

∑n
k=1 d

2
ij,

1
n

∑n
i=1 d

2
ij,

and 1
n2

∑n
i=1

∑n
j=1 d

2
ij are the averages of the square of the elements of the ith row, the

square of the elements of the jth column and all squared distances respectively.
(2) Having constructed XTX we can use an eigenvalue decomposition to determine the
coordinate matrix X. Clearly XTX is symmetric and if the distances come from a set of
n points in a d-dimensional space XTX will be positive definite and of rank d. Thus we
can decompose XTX asXTX = V TσV where the first d eigenvalues are positive and the
remainder are zero. Since the XTX = V Tσ

1
2σ

1
2V and thus the coordinates are given by

X = V Tσ
1
2

Exercise 1.31

1. Consider the pairwise distance matrix for twenty US cities given below. Use the
algorithm of Exercise 2 to place the cities on a map of the US.

2. Suppose you had airline distances for 50 cities around the world. Could you use
these distances to construct a world map?

34



B B C D D H L M M M
O U H A E O A E I I
S F I L N U M A M

Boston - 400 851 1551 1769 1605 2596 1137 1255 1123
Buffalo 400 - 454 1198 1370 1286 2198 803 1181 731
Chicago 851 454 - 803 920 940 1745 482 1188 355
Dallas 1551 1198 803 - 663 225 1240 420 1111 862
Denver 1769 1370 920 663 - 879 831 879 1726 700
Houston 1605 1286 940 225 879 - 1374 484 968 1056
Los Angeles 2596 2198 1745 1240 831 1374 - 1603 2339 1524
Memphis 1137 803 482 420 879 484 1603 - 872 699
Miami 1255 1181 1188 1111 1726 968 2339 872 - 1511
Minneapolis 1123 731 355 862 700 1056 1524 699 1511 -
New York 188 292 713 1374 1631 1420 2451 957 1092 1018
Omaha 1282 883 432 586 488 794 1315 529 1397 290
Philadelphia 271 279 666 1299 1579 1341 2394 881 1019 985
Phoenix 2300 1906 1453 887 586 1017 357 1263 1982 1280
Pittsburgh 483 178 410 1070 1320 1137 2136 660 1010 743
Saint Louis 1038 662 262 547 796 679 1589 240 1061 466
Salt Lake City 2099 1699 1260 999 371 1200 579 1250 2089 987
San Francisco 2699 2300 1858 1483 949 1645 347 1802 2594 1584
Seattle 2493 2117 1737 1681 1021 1891 959 1867 2734 1395
Washington D.C. 393 292 597 1185 1494 1220 2300 765 923 934
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N O P P P S S S S D
Y M H H I t L F E C

A I O T L C A
Boston 188 1282 271 2300 483 1038 2099 2699 2493 393
Buffalo 292 883 279 1906 178 662 1699 2300 2117 292
Chicago 713 432 666 1453 410 262 1260 1858 1737 597
Dallas 1374 586 1299 887 1070 547 999 1483 1681 1185
Denver 1631 488 1579 586 1320 796 371 949 1021 1494
Houston 1420 794 1341 1017 1137 679 1200 1645 1891 1220
Los Angeles 2451 1315 2394 357 2136 1589 579 347 959 2300
Memphis 957 529 881 1263 660 240 1250 1802 1867 765
Miami 1092 1397 1019 1982 1010 1061 2089 2594 2734 923
Minneapolis 1018 290 985 1280 743 466 987 1584 1395 934
New York - 1144 83 2145 317 875 1972 2571 2408 205
Omaha 1144 - 1094 1036 836 354 833 1429 1369 1014
Philadelphia 83 1094 - 2083 259 811 1925 2523 2380 123
Phoenix 2145 1036 2083 - 1828 1272 504 653 1114 1963
Pittsburgh 317 836 259 1828 - 559 1668 2264 2138 192
Saint Louis 875 354 811 1272 559 - 1162 1744 1724 712
Salt Lake City 1972 833 1925 504 1668 1162 - 600 701 1848
San Francisco 2571 1429 2523 653 2264 1744 600 - 678 2442
Seattle 2408 1369 2380 1114 2138 1724 701 678 - 2329
Washington D.C. 250 1014 123 1983 192 712 1848 2442 2329 -
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